XLarge Models (40B+ Parameters)
Our XLarge models, featuring Llama-3.1-70B, represent the most powerful language models in our lineup. With over 40 billion parameters, these models excel at complex reasoning, nuanced understanding, and sophisticated content generation.
Available Models
Llama-3.1-70B
- Parameters: 70B
- Context Window: 128,000 tokens
- Provider: Meta
- License: Meta Llama 3 License
- Key Features:
- Multilingual capabilities
- Advanced reasoning
- Complex task handling
- Long context understanding
Configuration & Setup
OpenAI SDK
import OpenAI from 'openai';
const openai = new OpenAI({
apiKey: 'your-neuredge-key',
baseURL: 'https://api.neuredge.dev/v1/'
});
Native SDK
import { Neuredge } from '@neuredge/sdk';
const neuredge = new Neuredge({
apiKey: 'your-api-key'
});
Real-World Applications & Examples
1. Advanced Content Creation
Blog Post Generation
const response = await openai.chat.completions.create({
model: '@cf/meta/llama-3.1-70b-instruct',
messages: [
{
role: 'system',
content: 'You are an expert content writer specializing in technical topics. Write in a clear, engaging style with concrete examples.'
},
{
role: 'user',
content: 'Write a comprehensive blog post about the impact of AI on healthcare, focusing on recent developments and future prospects.'
}
],
temperature: 0.7,
max_tokens: 1000
});
Use Cases:
- Long-form content creation
- Technical documentation
- Research paper drafting
- Marketing copy with industry expertise
- Educational content development
2. Enterprise Document Analysis
Contract Review Assistant
const response = await openai.chat.completions.create({
model: '@cf/meta/llama-3.1-70b-instruct',
messages: [
{
role: 'system',
content: 'You are a legal document analyst. Review contracts for potential issues and summarize key points.'
},
{
role: 'user',
content: \`Review this contract clause:
${contractText}
Identify potential risks and suggest improvements.\`
}
],
temperature: 0.3
});
Use Cases:
- Legal document review
- Compliance checking
- Policy analysis
- Risk assessment
- Contract summarization
3. Research & Analysis
Literature Review
const response = await openai.chat.completions.create({
model: '@cf/meta/llama-3.1-70b-instruct',
messages: [
{
role: 'system',
content: 'You are a research assistant helping with academic literature review. Analyze papers and identify key findings and methodologies.'
},
{
role: 'user',
content: \`Analyze these research abstracts and identify common themes and contradictions:
${abstracts.join('\n\n')}\`
}
],
temperature: 0.2,
max_tokens: 1500
});
Use Cases:
- Academic research
- Meta-analysis
- Systematic reviews
- Research synthesis
- Methodology comparison
4. Complex Problem Solving
System Architecture Design
const response = await openai.chat.completions.create({
model: '@cf/meta/llama-3.1-70b-instruct',
messages: [
{
role: 'system',
content: 'You are a solutions architect helping design scalable systems.'
},
{
role: 'user',
content: \`Design a microservices architecture for an e-commerce platform that needs to handle:
- 1M daily active users
- Real-time inventory
- Payment processing
- Order fulfillment
Provide detailed component breakdown and communication patterns.\`
}
],
temperature: 0.4
});
Use Cases:
- System design
- Architecture planning
- Technical solution design
- Performance optimization strategies
- Scalability planning
Integration Examples
Express.js REST API
import express from 'express';
import OpenAI from 'openai';
const app = express();
app.use(express.json());
const openai = new OpenAI({
apiKey: process.env.NEUREDGE_API_KEY,
baseURL: 'https://api.neuredge.dev/v1/'
});
app.post('/analyze', async (req, res) => {
try {
const { text } = req.body;
const response = await openai.chat.completions.create({
model: '@cf/meta/llama-3.1-70b-instruct',
messages: [
{
role: 'system',
content: 'Analyze the following text and provide key insights.'
},
{
role: 'user',
content: text
}
]
});
res.json({ analysis: response.choices[0].message.content });
} catch (error) {
res.status(500).json({ error: error.message });
}
});
Next.js API Route
// pages/api/generate.js
import OpenAI from 'openai';
const openai = new OpenAI({
apiKey: process.env.NEUREDGE_API_KEY,
baseURL: 'https://api.neuredge.dev/v1/'
});
export default async function handler(req, res) {
if (req.method !== 'POST') {
return res.status(405).json({ message: 'Method not allowed' });
}
try {
const { prompt } = req.body;
const response = await openai.chat.completions.create({
model: '@cf/meta/llama-3.1-70b-instruct',
messages: [
{
role: 'user',
content: prompt
}
]
});
res.status(200).json({ result: response.choices[0].message.content });
} catch (error) {
res.status(500).json({ error: error.message });
}
}
Best Practices
-
Prompt Engineering
- Be specific and detailed in requirements
- Use system messages to set context
- Break complex tasks into steps
- Include examples for better results
-
Resource Optimization
- Use streaming for long responses
- Implement proper error handling
- Cache common responses
- Monitor token usage
-
Quality Control
- Validate model outputs
- Implement human review when needed
- Use lower temperatures for factual responses
- Higher temperatures for creative tasks
Token Management
Plan | Monthly Token Quota |
---|---|
Free Tier | 40K tokens |
$29 Plan | 400K tokens |
$49 Plan | 600K tokens |
When to Use
✅ Ideal For:
- Complex reasoning tasks
- Research and analysis
- Professional content creation
- Technical documentation
- System design
- Multi-step problem solving
❌ Consider Alternatives When:
- Quick responses needed
- Simple tasks
- Limited computing resources
- Cost-sensitive applications
- High-volume, basic operations
Getting Started
To begin using Llama-3.1-70B, check out: