Skip to main content

XLarge Models (40B+ Parameters)

Our XLarge models, featuring Llama-3.1-70B, represent the most powerful language models in our lineup. With over 40 billion parameters, these models excel at complex reasoning, nuanced understanding, and sophisticated content generation.

Available Models

Llama-3.1-70B

  • Parameters: 70B
  • Context Window: 128,000 tokens
  • Provider: Meta
  • License: Meta Llama 3 License
  • Key Features:
    • Multilingual capabilities
    • Advanced reasoning
    • Complex task handling
    • Long context understanding

Configuration & Setup

OpenAI SDK

import OpenAI from 'openai';

const openai = new OpenAI({
apiKey: 'your-neuredge-key',
baseURL: 'https://api.neuredge.dev/v1/'
});

Native SDK

import { Neuredge } from '@neuredge/sdk';

const neuredge = new Neuredge({
apiKey: 'your-api-key'
});

Real-World Applications & Examples

1. Advanced Content Creation

Blog Post Generation

const response = await openai.chat.completions.create({
model: '@cf/meta/llama-3.1-70b-instruct',
messages: [
{
role: 'system',
content: 'You are an expert content writer specializing in technical topics. Write in a clear, engaging style with concrete examples.'
},
{
role: 'user',
content: 'Write a comprehensive blog post about the impact of AI on healthcare, focusing on recent developments and future prospects.'
}
],
temperature: 0.7,
max_tokens: 1000
});

Use Cases:

  • Long-form content creation
  • Technical documentation
  • Research paper drafting
  • Marketing copy with industry expertise
  • Educational content development

2. Enterprise Document Analysis

Contract Review Assistant

const response = await openai.chat.completions.create({
model: '@cf/meta/llama-3.1-70b-instruct',
messages: [
{
role: 'system',
content: 'You are a legal document analyst. Review contracts for potential issues and summarize key points.'
},
{
role: 'user',
content: \`Review this contract clause:
${contractText}
Identify potential risks and suggest improvements.\`
}
],
temperature: 0.3
});

Use Cases:

  • Legal document review
  • Compliance checking
  • Policy analysis
  • Risk assessment
  • Contract summarization

3. Research & Analysis

Literature Review

const response = await openai.chat.completions.create({
model: '@cf/meta/llama-3.1-70b-instruct',
messages: [
{
role: 'system',
content: 'You are a research assistant helping with academic literature review. Analyze papers and identify key findings and methodologies.'
},
{
role: 'user',
content: \`Analyze these research abstracts and identify common themes and contradictions:
${abstracts.join('\n\n')}\`
}
],
temperature: 0.2,
max_tokens: 1500
});

Use Cases:

  • Academic research
  • Meta-analysis
  • Systematic reviews
  • Research synthesis
  • Methodology comparison

4. Complex Problem Solving

System Architecture Design

const response = await openai.chat.completions.create({
model: '@cf/meta/llama-3.1-70b-instruct',
messages: [
{
role: 'system',
content: 'You are a solutions architect helping design scalable systems.'
},
{
role: 'user',
content: \`Design a microservices architecture for an e-commerce platform that needs to handle:
- 1M daily active users
- Real-time inventory
- Payment processing
- Order fulfillment
Provide detailed component breakdown and communication patterns.\`
}
],
temperature: 0.4
});

Use Cases:

  • System design
  • Architecture planning
  • Technical solution design
  • Performance optimization strategies
  • Scalability planning

Integration Examples

Express.js REST API

import express from 'express';
import OpenAI from 'openai';

const app = express();
app.use(express.json());

const openai = new OpenAI({
apiKey: process.env.NEUREDGE_API_KEY,
baseURL: 'https://api.neuredge.dev/v1/'
});

app.post('/analyze', async (req, res) => {
try {
const { text } = req.body;
const response = await openai.chat.completions.create({
model: '@cf/meta/llama-3.1-70b-instruct',
messages: [
{
role: 'system',
content: 'Analyze the following text and provide key insights.'
},
{
role: 'user',
content: text
}
]
});

res.json({ analysis: response.choices[0].message.content });
} catch (error) {
res.status(500).json({ error: error.message });
}
});

Next.js API Route

// pages/api/generate.js
import OpenAI from 'openai';

const openai = new OpenAI({
apiKey: process.env.NEUREDGE_API_KEY,
baseURL: 'https://api.neuredge.dev/v1/'
});

export default async function handler(req, res) {
if (req.method !== 'POST') {
return res.status(405).json({ message: 'Method not allowed' });
}

try {
const { prompt } = req.body;
const response = await openai.chat.completions.create({
model: '@cf/meta/llama-3.1-70b-instruct',
messages: [
{
role: 'user',
content: prompt
}
]
});

res.status(200).json({ result: response.choices[0].message.content });
} catch (error) {
res.status(500).json({ error: error.message });
}
}

Best Practices

  1. Prompt Engineering

    • Be specific and detailed in requirements
    • Use system messages to set context
    • Break complex tasks into steps
    • Include examples for better results
  2. Resource Optimization

    • Use streaming for long responses
    • Implement proper error handling
    • Cache common responses
    • Monitor token usage
  3. Quality Control

    • Validate model outputs
    • Implement human review when needed
    • Use lower temperatures for factual responses
    • Higher temperatures for creative tasks

Token Management

PlanMonthly Token Quota
Free Tier40K tokens
$29 Plan400K tokens
$49 Plan600K tokens

When to Use

Ideal For:

  • Complex reasoning tasks
  • Research and analysis
  • Professional content creation
  • Technical documentation
  • System design
  • Multi-step problem solving

Consider Alternatives When:

  • Quick responses needed
  • Simple tasks
  • Limited computing resources
  • Cost-sensitive applications
  • High-volume, basic operations

Getting Started

To begin using Llama-3.1-70B, check out: