Medium Models (8.1B-20B Parameters)
Our medium-sized models offer enhanced capabilities and specialized features. With 8.1B to 20B parameters, these models provide superior performance for specific use cases while maintaining reasonable resource requirements.
Available Models
Qwen-14B
- Parameters: 14B
- Context Window: 8192 tokens
- Provider: Alibaba Cloud
- License: Apache 2.0
- Key Features:
- Strong multilingual capabilities
- Advanced reasoning
- Knowledge integration
- Technical understanding
DeepSeek Math 14B
- Parameters: 14B
- Context Window: 4096 tokens
- Provider: DeepSeek AI
- License: Apache 2.0
- Key Features:
- Mathematical specialization
- Step-by-step solutions
- Formula understanding
- Scientific computation
Configuration & Setup
OpenAI SDK Setup
import OpenAI from 'openai';
const openai = new OpenAI({
apiKey: 'your-neuredge-key',
baseURL: 'https://api.neuredge.dev/v1/'
});
Native SDK Setup
import { Neuredge } from '@neuredge/sdk';
const neuredge = new Neuredge({
apiKey: 'your-api-key'
});
Real-World Applications & Examples
1. Advanced Mathematical Problem Solving
Step-by-Step Math Solutions
const response = await openai.chat.completions.create({
model: '@cf/deepseek-math-7b-instruct',
messages: [
{
role: 'system',
content: 'You are a mathematics tutor. Provide clear, step-by-step solutions.'
},
{
role: 'user',
content: \`Solve this calculus problem:
Find the volume of the solid obtained by rotating the region bounded by
y = x², y = 2x, and x = 0 about the x-axis.\`
}
],
temperature: 0.3,
max_tokens: 800
});
Use Cases:
- Math education
- Engineering calculations
- Scientific computing
- Research analysis
- Statistical modeling
2. Multilingual Content Creation
Global Marketing Content
const response = await openai.chat.completions.create({
model: '@cf/qwen/qwen1.5-14b-chat-awq',
messages: [
{
role: 'system',
content: 'You are a multilingual marketing expert. Create culturally appropriate content.'
},
{
role: 'user',
content: \`Create product descriptions for a luxury watch in:
1. English (US market)
2. Chinese (mainland China market)
3. Japanese (Japan market)
Focus on cultural preferences and market-specific value propositions.\`
}
],
temperature: 0.7,
max_tokens: 1000
});
Use Cases:
- International marketing
- Localization
- Cultural adaptation
- Global communications
- Multilingual documentation
3. Technical Documentation & Analysis
API Documentation Generator
const response = await openai.chat.completions.create({
model: '@cf/qwen/qwen1.5-14b-chat-awq',
messages: [
{
role: 'system',
content: 'Generate comprehensive API documentation with examples and best practices.'
},
{
role: 'user',
content: \`Create documentation for this GraphQL API schema:
${schemaDefinition}
Include:
- Field descriptions
- Usage examples
- Common queries
- Error handling\`
}
],
temperature: 0.4,
max_tokens: 1500
});
Use Cases:
- Technical writing
- API documentation
- System specifications
- Architecture documents
- Implementation guides
4. Scientific Research Assistance
Research Analysis
const response = await openai.chat.completions.create({
model: '@cf/deepseek-math-7b-instruct',
messages: [
{
role: 'system',
content: 'You are a research assistant analyzing scientific papers and data.'
},
{
role: 'user',
content: \`Analyze this dataset and research hypothesis:
${experimentData}
Provide:
1. Statistical analysis
2. Correlation findings
3. Potential implications
4. Suggested next steps\`
}
],
temperature: 0.4,
max_tokens: 1000
});
Use Cases:
- Data analysis
- Research synthesis
- Experimental design
- Statistical review
- Methodology planning
Integration Examples
Flask Research Application
from flask import Flask, request, jsonify
from openai import OpenAI
app = Flask(__name__)
client = OpenAI(
api_key='your-neuredge-key',
base_url='https://api.neuredge.dev/v1/'
)
@app.route('/analyze-research', methods=['POST'])
def analyze_research():
try:
data = request.json
response = client.chat.completions.create(
model='@cf/deepseek-math-7b-instruct',
messages=[
{
'role': 'system',
'content': 'Analyze research data and provide insights.'
},
{
'role': 'user',
'content': f"Analyze this research data:\n{data['content']}"
}
],
temperature=0.4
)
return jsonify({
'analysis': response.choices[0].message.content,
'usage': response.usage
})
except Exception as e:
return jsonify({'error': str(e)}), 500
Next.js Multilingual Content Generator
// pages/api/generate-content.js
import { OpenAIStream, StreamingTextResponse } from 'ai';
import OpenAI from 'openai';
const openai = new OpenAI({
apiKey: process.env.NEUREDGE_API_KEY,
baseURL: 'https://api.neuredge.dev/v1/'
});
export default async function handler(req, res) {
const { content, languages } = await req.json();
const response = await openai.chat.completions.create({
model: '@cf/qwen/qwen1.5-14b-chat-awq',
messages: [
{
role: 'system',
content: 'Translate and adapt content for different markets.'
},
{
role: 'user',
content: `Content: ${content}\nTarget languages: ${languages.join(', ')}`
}
],
stream: true
});
const stream = OpenAIStream(response);
return new StreamingTextResponse(stream);
}
Best Practices
-
Task-Specific Optimization
- Use DeepSeek Math for mathematical/scientific tasks
- Choose Qwen for multilingual/technical content
- Adjust temperature based on task precision needs
- Implement proper context handling
-
Performance Management
- Cache complex computations
- Use streaming for long outputs
- Implement timeout handling
- Monitor resource usage
-
Quality Control
- Validate mathematical results
- Verify translations
- Review technical accuracy
- Implement feedback loops
Token Management
Plan | Monthly Token Quota |
---|---|
Free Tier | 150K tokens |
$29 Plan | 1.5M tokens |
$49 Plan | 2.25M tokens |
When to Use
✅ Ideal For:
- Mathematical computations
- Scientific research
- Technical documentation
- Multilingual content
- Complex analysis
❌ Consider Alternatives When:
- Basic text generation needed
- Speed is critical
- Limited budget
- Simple queries suffice
Getting Started
To begin using our medium models: